En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
[,ri:mɪʃ'və:ʃtn]
общая лексика
"Реймская версия" (английский перевод Нового завета Библии, сделанный католиками в г. Реймсе в 1582)
[əmerikən'stændəd'və:ʃ(ə)n]
синоним
[ə'merikənrivaizd'və:ʃ(ə)n]
общая лексика
«Американская исправленная версия» (издание Библии, вышедшее в 1901 г.)
Version space learning is a logical approach to machine learning, specifically binary classification. Version space learning algorithms search a predefined space of hypotheses, viewed as a set of logical sentences. Formally, the hypothesis space is a disjunction
(i.e., either hypothesis 1 is true, or hypothesis 2, or any subset of the hypotheses 1 through n). A version space learning algorithm is presented with examples, which it will use to restrict its hypothesis space; for each example x, the hypotheses that are inconsistent with x are removed from the space. This iterative refining of the hypothesis space is called the candidate elimination algorithm, the hypothesis space maintained inside the algorithm its version space.